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 The nonstationary combustion regimes of a homogeneous solid propellant, i.e., stability and steady-
state combustion in an acoustic-wave field, are investigated. Analytical formulas for the boundary of
stable combustion, the nonstationary rate of combustion, and the acoustic admittance are found. Ac-
count for the relaxation time of the gas phase substantially changes the concept of the region of sta-
ble combustion of a solid propellant. The exothermal reaction of decomposition of the propellant
turns out to be improbable by virtue of the smallness of the stability region and the positiveness of
phenomenological coefficients. In the case of pressure oscillations with a period, comparable to the
relaxation time of the gas phase, the acoustic admittance of the propellant depends strongly on both
this relaxation time and the Lewis number in the gas phase.

In designing solid-propellant rocket engines, one must know the manner in which the combustion of
a propellant charge occurs under nonstationary conditions. These conditions can be created artificially, for
example, in controlling the engine thrust. Another type of nonstationary processes occurs when the combus-
tion stability is lost. In the theory of rocket engines, one recognizes low-frequency and high-frequency insta-
bilities [1]. At the present time, the first instability has been studied more thoroughly than the second one.
This is attributed to the fact that at low-frequency oscillations the relaxation time tg of the gas phase can be
disregarded by assuming it to be equal to zero. The important quantity for practical implementation, i.e., the
nonstationary linear rate u(t) of combustion of the propellant, is determined by slow thermal processes in the
solid propellant itself; these processes are characterized by the relaxation time tc (tc >> tg). This circumstance
substantially simplifies a theoretical analysis of low-frequency processes.

Figure 1 (top) illustrates one of the simplest variants of a solid-propellant rocket engine and a scheme
of decomposition of a homogeneous propellant (bottom) which is widely used in theoretical investigations [2,
3]. In the space x < xs(t), the temperature Tc of the propellant increases from the initial T0 to Tc. On the
surface xs(t), the primary decomposition reaction with a thermal effect L occurs during which the solid pro-
pellant is decomposed into a gaseous combustible and an oxidizer. This mixture is characterized by the tem-
perature T that in the so-called heating area grows from Ts to the value of Tb. The subsequent chemical
reaction with a thermal effect Q and a base pressure p0 proceeds on the surface xf(t), behind which the con-
stant flame temperature Tb is established in the stationary regime of combustion. The region x > xf(t) is called
the flame area.

In what follows, just as in the similar investigations performed earlier [4–6], the thickness of the
chemical-reaction zone for x = xs(t) and x = xf(t) is considered to be infinitely thin.

The leading edge xf(t) of the flame in the gas phase is usually located so close to the surface xs(t) of
the propellant that on the interval ∆x = xf(t) − xs(t) the projection of the vector v of the gas velocity onto the
x axis is much higher than the projection onto the y axis. Moreover, the scales of diffusion-thermal processes
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are much smaller, as a rule, than the dimensions of a propellant charge. All this makes it possible to make
the following assumptions:

(1) the diffusion-thermal processes in the solid and gas phases can be considered in the approximation
which is one-dimensional in space (i.e., along the x axis);

(2) the propellant charge and the flame itself extend to infinity;
(3) the pressure field for these processes can be considered to be independent of any spatial variables,

except for those cases where the wavelength of acoustic oscillations is comparable to ∆x.
Additional assumptions presuppose the ideality of the gas, the constancy of the molecular weight of

the gas, and the equality of the heat capacities of the solid and gas phases [4–6].
Then, under these assumptions, the problem of finding the nonstationary combustion rate of the solid

propellant is strongly simplified, although it still remains rather complex for analytical investigation. Never-
theless, it is possible to solve the problem of finding the region of stable combustion with one-dimensional
disturbances and determining the nonstationary combustion rate at a pressure varying harmonically with time
with a small amplitude [4–6].

The investigations carried out in these trends are of importance in view of the above-mentioned high-
frequency instability. Although modern propellants are mainly miscible ones and contain a metal (usually,
aluminum), this fact by no means minimizes the importance of investigating the combustion of homogeneous
propellants as simpler systems of the initial stage with subsequent transition to more complex systems, such
as miscible propellants. On the other hand, it is possible that the development of chemistry and technology
will produce in the future more efficient homogeneous propellants that will be as good as miscible propel-
lants in thermodynamic characteristics.

1. Mathematical Formulation of the Problem. In [4, 5, 7, 8], cases are investigated where evapo-
ration on the propellant surface xs(t) follows the Clausius–Clapeyron law. In [4, 5, 8], the Lewis number Le,
i.e., the ratio of the diffusion coefficient D to the thermal diffusivity κ of the gas, was assumed to be equal
to unity. The more complex process with Le ≠ 1 is studied in [7], where, as has been found, the Lewis num-
ber affects strongly the value of the nonstationary combustion rate u(t) = dxs(t)/dt.

The reaction of pyrolysis can also proceed on the surface xs(t). In this case, the combustion rate of
the solid propellant depends explicitly on the temperature Ts of the propellant surface and the pressure p: u

Fig. 1. Scheme of a propellant rocket engine (top) and model of combus-
tion of a solid propellant (bottom).
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= u(Ts, p). According to the ideas of F. A. Williams [2], the decomposition of the propellant into gaseous
components occurs simultaneously by both evaporation and pyrolysis. Depending on the pressure, both
mechanisms of decomposition are the limiting cases of the general mechanism. Pyrolysis becomes predomi-
nant over evaporation at relatively low pressures. However, the threshold value of the pressure p∗ , arbitrarily
separating different mechanisms of decomposition, "is unique" for each type of propellant.

Below we consider the arbitrary values of the Le number and its influence on the process of combus-
tion of a solid propellant gasified by the pyrolysis reaction.

The above physical pattern of combustion of a homogeneous propellant is mathematically described
by the system of equations [6]

− ∞ < x < xs (t) :   ρccc 
∂Tc

∂t
 = 

∂
∂x

 




λc 
∂Tc

∂x




 ;

xs (t) < x < xf (t) :  
∂ρ
∂t

 + 
∂

∂x
 ρv = 0 ,   ρ 





∂Y

∂t
 + v 

∂Y
∂x




 = 

∂
∂x

 



Dρ 

∂Y

∂x




 ,

ρcp 




∂T

∂t
 + v 

∂T

∂x




 = 

∂
∂x

 




λ 
∂T

∂x




 + ρcp 

γ − 1
γ

 
T
p

 
dp
dt

 ; xf (t) < x < + ∞ :  
∂ρ
∂t

 + 
∂

∂x
 ρvb = 0 ,

ρcp 




∂Tb

∂t
 + vb 

∂Tb

∂x




 = 

∂
∂x

 




λ 
∂Tb

∂x




 + ρcp 

γ − 1

γ
 
Tb

p
 
dp

dt
 ,   p = ρRT .

(1)

The boundary conditions are as follows:

x → − ∞ :  Tc = T0 ,

x = xs (t) :  − ρc 
dxs

dt
 = − ρ 

dxs

dt
 + ρv ,   − ρc 

dxs

dt
 = − ρ 

dxs

dt
 + ρvY − Dρ 

∂Y

∂x
 ,

− ρc 
dxs

dt
 = m1 (T, p) ,   T = Tc ,   λc 

∂Tc

∂x
 = λ 

∂T

∂x
 + Lρc 

dxs

dt
 ;

x = xf (t) :  Y = 0 ,   v = vb ,   T = Tb ,   λ 
∂T

∂x
 = λ 

∂Tb

∂x
 − DρQ 

∂Y

∂x
 ,   − Dρ 

∂Y

∂x
 = m2 (T, p) ;

x → + ∞ :   Tb  < + ∞ .

The sign before the L, taken in the boundary conditions, corresponds to the endothermal reaction. The
mass combustion rates m1 and m2 are equal to each other only in the case where the combustion is stable.

The dependences of the diffusion coefficient and the thermal conductivity of the gas on the tempera-
ture and pressure will be taken in the form

D D 
T2

p
 ,   λ � T . (2)

They are close to those observed experimentally [9] in form.
Assigning the superscript 0 to the stationary values of the symbols, we pass in the system of equa-

tions (1) to the dimensionless quantities and to the Lagrangian coordinate ξ according to the expressions
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− ∞ < x < xs (t) :  ξ = 
u0

κc
 [x − xs (t)] ,   u0 B − 





dxs

dt




0

 ;

xs (t) < x < + ∞ :  ξ = 
u0

σκc ρc
   ∫ 
xs(t)

x

  ρ (y, t) dy ,   κc = 
λc

cc ρc
 ,

θc = 
Tc

Ts
0 ,   θ = 

T

Ts
0 ,   θb = 

Tb

Ts
0 ,   θ0

T0

Ts
0 ,   q = 

Q

cpTs
0 ,   σ = 

D (ρ0)2

κc ρc
2  ,

B = − 
ρc

m1
0 

dxs

dt
 ,   l = 

L

ccTs
0 ,   τ = 

(u0)2

κc

 t ,   η = 
p

p0

 ,   m1
0 = m2

0 = ρcu
0 .

(3)

This allows us to separate the hydrodynamic part of the problem from the diffusion-thermal part. Using the
second formula from Eq. (2) and the equation of state of an ideal gas, we can easily verify that

λρ
λ0ρ0 = η . (4)

The partial derivatives in Eq. (1) are determined in an Euler coordinate system. Therefore, these de-
rivatives must be redetermined in a new Lagrangian coordinate system. To distinguish the time derivatives in
the indicated coordinate systems, we introduce the subscript Eu for the Euler derivative. However, the re-
quired calculations are given in detail only for the temperature T, since for the remaining parameters the
transition to the new coordinate system will not be difficult. Thus:

∂T

∂t



 Eu

 = 
∂T

∂t
 + 

∂ξ
∂t

 
∂T

∂ξ
 ,   

∂ξ
∂t

 = − 
u0ρ

σκc ρc
 
dxs

dt
 + 

u0

σκc ρc
   ∫ 

xs(t)

x

  
∂ρ
∂t

 dy .

Substitution into this expression of the quantity ∂ρ ⁄ ∂t from the second expression in Eq. (1) and subsequent
evaluation of the integral give

∂ξ
∂t

 = − 
u0

σκc ρc
 




ρ 
dxs

dt
 + ρv − ρv x=xs(t)




 = − 

u0

σκc ρc
 




ρc 
dxs

dt
 + ρv




 .

Having calculated the derivative of ξ with respect to x

∂ξ
∂x

 = 
u0ρ

σκc ρc
 ,

it is easy to transform the left-hand side of the equation for T:

∂T

∂t



 Eu

 + v 
∂T

∂x
 = 

∂T

∂t
 − 

u0

σκc ρc
 




ρc 
dxs

dt
 + ρv




 
∂T

∂ξ
 + v 

∂ξ
∂x

 
∂T

∂ξ
 =

= 
∂T

∂t
 − 

u0

σκc

 
dxs

dt
 
∂T

∂ξ
 = 

(u0)2

σκc

 




σ 
∂T

∂τ
 − 

1

u0 
dxs

dt
 
∂T

∂ξ




 .
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The transition to the Lagrangian coordinate ξ in the term, responsible for conductive heat transfer, is
somewhat simpler:

1

ρcp

 
∂

∂x
 




λ 
∂T

∂x




 = 

λρ
cp

 




u0

σκc ρc





2

 
∂2T

∂ξ2 = 
(u0)2

σκc

 η 
∂2T

∂ξ2  .

Here we used formula (4), the form of the parameter σ from Eq. (3), and the above assumption cc = cp.
Further transition to the Lagrangian coordinate and to the dimensionless quantities in the remaining

equations is not difficult. When transforming the diffusion equation, it must be taken into account that by
virtue of the above dependences (2) for D and λ, the following equalities hold:

Dρ2

σκc ρc
2 = 

Dρ2cp

λ0ρ0  = Le η ,   Le = 
D0ρ0cp

λ0  = const .

The mathematical formulation of the problem in the new variables has the form

− ∞ < ξ < 0 :  
∂θc

∂τ
 + B 

∂θc

∂ξ
 − 

∂2θc

∂ξ2  = 0 ,

0 < ξ < ξf :  σ 
∂θ
∂τ

 + B 
∂θ
∂ξ

 − η 
∂2θ
∂ξ2 = σΓ 

θ
η

 
dη
dτ

 ,   σ 
∂Y

∂τ
 + B 

∂Y

∂ξ
 − η Le 

∂2Y

∂ξ2  = 0 ,

ξf < ξ < + ∞ :  σ 
∂θb

∂τ
 + B 

∂θb

∂ξ
 − η 

∂2θb

∂ξ2  = σΓ 
θb

η
 
dη

dτ
 ,   B = B (t) ,   ξf = ξf (t) ,   Γ = 

γ − 1

γ
 .

(5)

The boundary conditions are as follows:

ξ → − ∞ :  θc = θ0 ,

ξ = 0 :  θc = 0 ,   
∂θc

∂ξ
 = η 

∂θ
∂ξ

 − lB ,   B (1 − Y) + η Le 
∂Y

∂ξ
 = 0 ,   B = m1 (θ, η) ⁄ m1

0 ,

ξ = ξf :  θ = θb ,   
∂θ
∂ξ

 = 
∂θb

∂ξ
 − q Le 

∂Y

∂ξ
 ,   − η Le 

∂Y

∂ξ
 = m2 (θ, η) ⁄ m2

0 ,   Y = 0 ,

ξ → + ∞ :   θb  < + ∞ .

In the system of equations (5), it is the dimensionless relaxation time σ of the diffusion-thermal proc-
esses in the gas that is the small parameter: σ << 1. The equation of state of the gas is not given here, since
this equation is required for solving the hydrodynamic part of the problem. For further analysis, it is neces-
sary to find stationary solutions of system (5). This can be done easily; therefore, we present the solutions
sought without preliminary calculations:

θc
0 = θ0 + (1 − θ0) exp ξ ,   θ0 = θ0 − l + (1 − θ0 + l) exp ξ ,   Y = 1 − (1 − Ys

0) exp (ξ ⁄ Le) ,

θb
0 = θ0 + q − l ,   B0 = 1 ,   ξf

0 = − Le ln (1 − Ys
0) = − ln 

q

1 + l − θ0
 ,   Ys

0 = 1 − 




1 − θ0 + l

q





1 ⁄ Le

 ,
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where the notation Ys
0 is introduced for the mass concentration of the combustible gas near the surface of the

propellant decomposition (in stationary combustion).
2. Equations for a Weakly Disturbed System. In this section and in what follows, the pressure

oscillations are considered to be harmonic and small in amplitude. The solution of problem (1) or (5) with
such a law of change of the pressure is used for calculating the acoustic admittance [8, 10].

To find the region of stable combustion and the nonstationary combustion rate of the propellant at
variable pressure, it is necessary to investigate the processes that correspond to the solutions of Eqs. (5) of
the form

θc = θc
0 + ϑc (ξ) exp (Ωτ) ,   θ = θ0 + ϑ (ξ) exp (Ωτ) ,   Y = Y0 + y (ξ) exp (Ωτ) ,

θb = θb
0 + ϑb (ξ) exp (Ωτ) ,   ξf = ξf

0 + s exp (Ωτ) ,   B = 1 + b exp (Ωτ) ,   η = 1 + φ exp (Ωτ) ,
(6)

where Ω is the increment in the buildup of disturbances, whereas the supplements to the stationary solutions
are assumed to be small quantities of first order. Substituting Eqs. (6) into Eqs. (5) and retaining only the
terms which are linear in disturbance, we obtain the system of equations

− ∞ < ξ < 0 :  
d2ϑc

dξ2  − 
dϑc

dξ
 − Ωϑc = ∆b exp ξ ,   ∆ = 1 − θ0 ,

0 < ξ < ξf
0 :  

d2ϑ
dξ2  − 

dϑ
dξ

 − σΩϑ = [b − (1 + σΩΓ) φ] (∆ + l) exp ξ − σΩΓ (θ0 − l) φ ,

Le 
d2y

dξ2 − 
dy

dξ
 − σΩy = 

a

Le
 (φ − b) exp (ξ ⁄ Le) ,   a = 1 − Ys

0 ,

ξf
0 < ξ < + ∞ :  

d2ϑb

dξ2  − 
dϑb

dξ
 − σΩϑb = − σΩΓθb

0φ ,

ξ → − ∞ :  ϑc → 0 ,

ξ = 0 :  ϑc = ϑ  ,   y − Le 
dy
dξ

 = a (b − φ) ,   b = 
1
∆

 
k
r
 ϑ + 





ν − 
µk
r




 φ ,

dϑc

dξ
 = 

dϑ
dξ

 + (∆ + l) φ − lb ,

ξ = ξf
0 :  ϑ = ϑb − qs ,   

dϑ
dξ

 = 
dϑb

dξ
 − Le q 

dy

dξ
 + 

1 − Le

Le
 qs ,   y = 

1

Le
 s ,

1
Le

 s − Le 
dy
dξ

 = 
k
∆

 ϑb + (ν − 1) φ ,

ξ → + ∞ :  ϑ b  < + ∞ .

(7)

The parameters k, r, µ, and ν are called phenomenological coefficients [10, 11]. They are determined
from experiment according to the formulas
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k = (Ts − T0) 




∂ ln m

∂T0



 p

 ,   r = 




∂Ts

∂T0



 p

 ,   ν = 




∂ ln m

∂ ln p



  T0

 ,   µ = 
1

Ts − T0
 




∂Ts

∂ ln p



  T0

 .

The physical premises for introduction of these coefficients into the theory of nonstationary combustion are
two functional dependences for the mass combustion rate m of propellants. The first of these is experimental:
m = m(p, T0). The second one is to a greater degree theoretical and has the form m = m(p, Ts). Since both
formulas hold for the same propellant, according to Ya. B. Zel’dovich we have a unique transition from the
(p, Ts) plane to the (p, T0) plane which is more convenient from the practical viewpoint [11]. Therefore, in
the fifth boundary condition of system (5) we carried out the following transformations:

m1 (T, p)

m1
0  = 1 + 

1

m1
0 





∂m1

∂Ts



 p

 δTs + 
1

m1
0 





∂m1

∂p



  Ts

 δp C

C 1 + 
1

m1
0 





∂m1
0

∂Ts
0



  p

 δTs + 
1

m1
0 





∂m1
0

∂p



  Ts

 δp = 1 + 




∂ ln m1
0

∂Ts
0



  p

 δTs + 




∂ ln m1
0

∂ ln p



  Ts

 δ ln p ;





∂ ln m1
0

∂Ts
0



  p

 = 




∂ ln m1
0

∂T0



  p

 




∂Ts
0

∂T0



  p

−1

} = 
1

Ts
0 − T0

 
k

r
 ,





∂ ln m1
0

∂ ln p



  Ts

 = 
∂ (ln m1

0, Ts
0)

∂ (ln p, Ts
0)

 
∂ (ln p, T0)

∂ (ln p, T0)
 = 





∂Ts
0

∂T0



  p

−1

 
∂ (ln m1

0, Ts
0)

∂ (ln p, T0)
 = ν − 

µk

r
 ,

as a result of which from Eq. (7) we obtained the fourth boundary condition. In a similar manner we write
the ratio m2

 ⁄ m2
0. Therefore, the transformation of the eighth boundary condition from Eq. (5) is not given

here.
The differential equations in (7) are simple and the determination of their solutions is not difficult.

Because of this, they will be presented below without preliminary calculations. We only note that in the
forms of the functions ϑc and ϑb, account is taken of the boundary conditions for x = −∞ and x = +∞ respec-
tively:

ϑc = Aq exp (zξ) − 
b∆
Ω

 exp ξ ,

ϑ = Fq exp (z1ξ) + Gq exp (z2ξ) + 
∆ + l
σΩ

 [φ (1 + σΩΓ) − b] exp ξ + Γ (θ0 − l) φ ,

y = C exp (z3ξ ⁄ Le) + D exp (z4ξ ⁄ Le) + 
ab

σΩ Le
 (b − φ) exp (ξ ⁄ Le) , ϑb = Hq exp (z2ξ) + Γθb

0φ ,

z = 
1
2

 (1 + √1 + 4Ω  ) ,   z1 = 
1
2

 (1 + √1 + 4σΩ  ) ,   z2 = 
1
2

 (1 − √1 + 4σΩ  ) ,
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z3 = 
1
2

 (1 + √ 1 + 4σΩ Le ) ,   z4 = 
1
2

 (1 − √ 1 + 4σΩ Le  ) .

Using the given solutions in the boundary conditions ξ = 0 and ξ = ξf of the system of equations (7),
we obtain algebraic equations with the unknown constants of integration A, b, F, G, C, D, H, and s:

A + 
aLe

Ω
 


1
σ

 − δ


 b − F − G = 





aLe

σΩ
 + 

Γ
q




 φ ,

Az + aLe 




1
σΩ

 + 1 − δ − 
δ
Ω




 b − Fz1 − Gz2 = aLe 



1
σΩ

 + 1 + Γ


 φ ,

ab − Cz4 − Dz3 = aφ ,

− 
1

δaLe 
k

r
 A + 


1 + 

k

rΩ



 b = 





ν − 
µk

r




 φ ,

1

σΩ
 b − 

1

aLez1
 F − 

1

aLez2
 G + 

1

aLez2
 H − s = 

1

σΩ
 φ ,

1

σΩ
 
1 − Le

Le
 b + 

z3

az3
 C + 

z4

az4
 D + 

z1

aLez1
 F + 

z2

aLez2
 G − 

z2

aLez2
 H − 

1 − Le

Le
 s = 





1

σΩ
 
1 − Le

Le
 − Γ




 φ ,

1

σΩ Le
 b + 

z3

az3
 C + 

z4

az4
 D − 

1

aLe(z2+1) 
k

δ
 H − 

1

Le
 s = 





1

σΩ Le
 − 

kΓθb
0

∆
 + 1 − ν




 φ ,

1

σΩ Le
 b + 

1

az3
 C + 

1

az4
 D − 

1

Le
 s = 

1

σΩ Le
 φ ,

(8)

where the notation ∆ ⁄ (∆ + l) = δ is introduced.
In the case of investigating the combustion stability in a rocket-propellant engine, it is necessary,

within the framework of the approximation used here, to supplement this system with an equation which can
be derived from the condition of balance of the gas mass in the combustion chamber [10]. Here we will
assume that the pressure deviation φ from the stationary value is assigned [5–8].

3. Determination of the Region of Stable Combustion of a Propellant. The system of equations
(8) can be used to find the condition of stable combustion of a propellant that is in open space (then η = 1).
The possible instability of combustion is caused here only by the nature of the propellant itself. And if in Eq.
(8) we set φ = 0, then a homogeneous system will be obtained. The equality to zero of its determinant is the
condition of solvability of this system. The behavior of disturbances, whether they will increase infinitely,
decrease, or remain limited in absolute value depending on time, is determined by the form of the increment
Ω that is generally a complex quantity. If the real part of Ω is equal to zero, then the solutions of (5) of the
form (6) will be periodic with limited amplitudes. When these solutions are realized, the values of the physi-
cal parameters determine the boundary between the stable and unstable regimes of combustion.

The condition of equality to zero for the determinant of the homogeneous side of Eqs. (8) leads to
the equation
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  W′Φ + VΨ + 
δaLe

k
 H (σΩW′ + z1V) + P 




1 − 

δaLe

k
 z1




 = 0 , (9)

W′ = δ (z − 1) 


1
Ω

 + 
r
k




 + 1 − δ = δ (z − 1) r

k
 + W′ ,   W′ = δ 

z − 1
Ω

 + 1 − δ ,   V = 1 + σΩδ 
r
k
 ,

P = z∆ (z3 − z4) ,   H = z∆az2Le (a−z4 − a−z3) ,   z∆ = z1 − z2 ,

Φ = (z4a−z4 − z3a
−z3) (z1az1Le − z2az2Le) + σΩ (a−z4 − a−z3) (az1Le − az2Le) ,

Ψ = (z4a−z4 − z3a
−z3) (az2Le − az1Le) + (a−z4 − a−z3) (z2az1Le − z1az2Le) .

When Le = 1, expression (9) is simplified: 

k
a

 z∆ 

1 − (z − 1) 



r
k

 + 
1
Ω








 − z∆z1 − (a−z∆ − 1)  


(z − z2) 



z
k

 σΩδ + 1


 + (z − 1) (σδ − 1) + σΩ (1 − δ)



 = 0 .

This equation was previously obtained in [6]; its properties are also given partially in this work.
At the stability boundary, Ω = iω is a pure imaginary quantity, where ω has the meaning of the

oscillation frequency of the diffusion-thermal and hydrodynamic parameters. With such a form of the incre-
ment Ω, Eq. (9) contains real and imaginary parts, each of which separately must be equal to zero. From the
two equations obtained in this way, we can determine the boundary of the region of stable combustion in the
form k = k(r, δ, σ, Le, a), eliminating the frequency ω from the resultant dependences k = k(ω, δ, σ, Le, a)
and r = r(ω, δ, σ, Le, a); these dependences parametrically define k as a function of r and some other physi-
cal constants entering into Eq. (9).

Omitting the details of the calculation, we note that the evaluations are substantially simplified owing
to the visual and compact representation if we introduce operators for work with cumbersome complex ex-
pressions. Suppose that α = α1 + iα2 and β = β1 + iβ2 are arbitrary complex numbers. Then

α⋅β = 




α1

β1
   

α2

β2



  −

 + i 




α1

β1
   

α2

β2



  +

 ,

where the operators [ ]− and [ ]+ mean





α1

β1
   

α2

β2



  −

 = α1β1 − α2β2 ,   




α1

β1
   

α2

β2



  +

 = α1β2 + α2β1 .

Here and below subscripts 1 and 2 are assigned to the real and imaginary parts of the quantities W ′, V, P,
and others. We also introduce the notation

N = Re z1 − σωW2
′  + i (Im z1 + σωW1

′ ) ,   K = Im (z + z1) + i [1 − Re (z + z1)] .

In the end, the boundary of the stable-combustion region is determined in the following manner:
(1) we solve a quadratic equation relative to the unknown quantity r ⁄ k:

A3 


r
k





2

 + B3 




r
k




 + C3 = 0 , (10)
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A3

σωδ2 = 




H1
K1

   
H2
K2



  −

 











Re z

Φ1
   

Im z

Φ2



  +

 + σωΨ1







 − 





H1

K1
   

H2

K2



  +

 











Re z

Φ1
   

Im z

Φ2



  −

 − σωΨ2







 ,

B3 = δ 











Re z
Φ1

   
Im z

Φ2



  −

 − σωΨ2







 











H1

N1
   

H2

N2



  +

 − 




Re z1
P1

   
Im z1

P2



  +







 −

− σωδ 




H1

K1
   

H2

K2



  +

 















W1
′

Φ1

   
W2

′

Φ2



  −

 + P1 + Ψ1










 −

− δ 











Re z
Φ1

   
Im z
Φ2



  +

 + σωΨ1







 











H1

N1
   

H2

N2



  −

 − 




Re z1

P1
   

Im z1

P2



  −







 +

+ σωδ 




H1
K1

   
H2

K2



  −

 











W1
′

Φ1

   
W2

′

Φ2



  +

 + P2 + Ψ2










 ,

C3 = 











W1
′

Φ1

   
W2

′

Φ2



  −

 + P1 + Ψ1







 











H1

N1
   

H2
N2



  +

 − 




Re z1

P1
   

Im z1

P2



  +







 −

− 















W1
′

Φ1

   
W2

′

Φ2



  +

 + P2 + Ψ2







 











H1

N1
   

H2

N2



  −

 − 




Re z1

P1
   

Im z1

P2



  −







 ;

(2) from this quadratic equation we establish the dependence r ⁄ k = r ⁄ k(ω) as a function of the fre-
quency ω and then, considering this function simultaneously with the formula given below,

k

δaLe = 





Re z1
P1

   
Im z1

P2



  +

 + σωδ 
r
k
 




H1

K1
   

H2

K2



  +

 − 




H1
N1

   
H2

N2



  +

δ 
r
k
 




Re z − 1

Φ1
   

Im z
Φ2



  +

 + 




W1
′

Φ1

   
W2

′

Φ2



  +

 + 











1

Ψ1

   
σωδ 

r
k

Ψ2










 +

 + P2

 ,

we find the sought boundary of the stability region.
Both roots of Eq. (10) are real. They are numbered by subscripts 1 and 2 depending on the chosen

sign + or sign − before the square root of the discriminant (10): r1
 ⁄ k1 and r2

 ⁄ k2. Since these roots lead to
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two regions of stable combustion, the intersection of these regions corresponds to the solution of the problem
formulated here.

Some results of the calculation according to the above algorithm are presented in Fig. 2. The num-
bering of curves Γ1 and Γ2 corresponds to that of the roots in Eq. (10). As the base values, we take the
numerical values of the physical parameters given in [10] for powder H (powder H is a ballistic fuel which
contains 56.44% colloxylin, 27.72% nitroglycerin, 10.89% dinitrotoluene, 2.97% dimethyl-diphenylurea,
0.99% vaseline, and 0.99% water by weight) at a pressure of p0 = 50 atm and an initial temperature of T0 =
293 K. Further parametric analysis was made in the neighborhood of these data of the form: Q = 3347 kJ/kg,
cc = 3.2 kJ/(kg⋅K), ρc = 1.6⋅103 kg/m3, λc = 0.383 W/(m⋅K), L = −494 kJ/kg, Ts

0 = 673 K, and u0 =
6.7⋅10−3 m/sec. In addition to these data we also take D D 2.3⋅10−5 m2/sec, γ = 1.4, ρ0 D 0.8 kg/m3, and
λ0 D 0.06 W/(m⋅K).

The stability region denoted by curves Γ2 is located on the left of them when the r axis moves in the
positive direction [6, 10, 11]. The stability region can quite easily be determined from curves Γ1 if in Eq. (9)
we assume that Le = 1 and expand it in the parameter σΩ << 1 up to the terms linear in σΩ:

1 − k + (z − 1) 

r + 

k
Ω




 + σΩ 


2 ln 

1
a

 + 3a + (1 − a) 

W′ + 1 + δ 

r
k




 + 

2k
δ

 (W′ − 1)


 = 0 .

Now we let r → ∞ considering k to be limited. This will correspond to small Ω if the values of k lie
near the boundary of stable combustion. Discarding the small terms of the form O(1/r) and O(Ω2), after sim-
ple calculation we find

Ω = – 
k + σδ (1 − a)

4σk
 .

Whence it is evident that the combustion is stable, provided that k > −σδ(1 − a). Thus, when the r axis moves
along the boundary Γ1 in the positive direction, the region of stable combustion will be located on the right.
(We can confirm this conclusion by a numerical analysis of (9). For this, the equality of Eq. (9) to zero at
an arbitrary point of the plane k, r must be taken with the nonzero real part Ω. This analysis can most easily
be made near the stability boundary.)

Fig. 2. Change in curves Γ1 and Γ2 that determine the boundary of the
regions of stable and unstable combustion as a function of the parame-
ters a, Le, and σ: 1) σ = 0.01 and 2) 0.001. The qualitative behavior of
these regions as a function of the parameter a can be tracked in Fig. 2b
and c, as a function of the Le number in Fig. 2a and c, and as a function
of σ in Fig. 2a, b, and c.
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In practice, the parameters k and r are positive. In the case of their regularity, we come to the fol-
lowing conclusions: if the pyrolysis reaction on the propellant surface is exothermal, then the combustion is
stable within very narrow limits (see Fig. 2) of change of k and r (this is not the case if the thermal effect
is rather small; for this see below); moreover, it is required that r << 1 and k C 1. On the contrary, propellants
with an endothermal reaction of pyrolysis have a wider region of stable combustion.

We can generalize the results of the analysis of Eq. (9) by drawing the conclusion that account for
the dimensionless time σ of relaxation of the gas phase leads to results which differ from the theory with σ
= 0 not only quantitatively but also qualitatively. This feature is retained for an arbitrarily small σ. For ex-
ample, in the exothermal reaction of pyrolysis of the propellant and in the limit σ → 0 the combustion with
positive values of k and r is unstable (practically already for σ < 0.05), but in the endothermal reaction of
pyrolysis the combustion is stable. At the same time, the theory with σ = 0 formulates the stability condition
for combustion by the inequality [10, 14]

r > 
(k − 1)2

k + 1

or

2 + r − √r (8 + r)
2

 < k < 
2 + r + √r (8 + r)

2
 ,

whence, however, it is evident that the stable combustion of propellants, for which r = 0, is impossible,
whereas in the theory with a constant temperature of the decomposition surface of a propellant (r = 0) the
region of stable combustion is given by the condition k < 1 [12].

The above contradictions are evidence in favor of the fact that in the theory of nonstationary combus-
tion of powders and propellants it is necessary initially to consider the most rapid processes. Slow processes
(for example, heat transfer in the solid phase) must be taken into account as the secondary factors that weakly
disturb the nonstationary regime of combustion determined mainly by the gas phase and the chemical reac-
tion. The established situation can easily be understood from the representation of the unstable combustion of
propellants as a dynamic system [10, 13]. Within the framework of B. V. Novozhilov’s theory [14] (σ = 0)
and in the linear approximation, the nonstationary portion of the surface temperature of decomposition of the
propellant satisfies the ordinary differential equation of second order with an oscillation decrement Λ and a
natural frequency ω0 [13]

Λ = 
r (k + 1) − (k − 1)2

r2  ,   ω0 = 
√ k

r
 .

For r → 0 we have the equation with a vanishingly small parameter at a higher derivative [13] which
cannot be ignored for the reasons of smallness of this parameter. Therefore, the results of Ya. B. Zel’dovich’s
theory [12] do not follow as a particular case from B. V. Novozhilov’s theory [14].

Based on the investigation carried out here, it can also be assumed that on the surface of decomposi-
tion of homogeneous solid propellants, usually we have either the endothermal L > 0 or the weakly exother-
mal |L| << 1 (more exactly, for δ < 1.2–1.3) reaction of pyrolysis as the most stable process with respect to
high-frequency oscillations. It is precisely for these cases that curve Γ1 is similar to a hyperbola and remains
in the third quadrant of the plane k, r or makes a small loop into the fourth quadrant without intersecting
curve Γ2 and returning again to the third quadrant.

On the decomposition surface of the solid phase of the powder H, the reaction is exothermal. The
point of intersection of Γ1 and Γ2 corresponds here to frequencies of ω D 1 ⁄ σ or higher. For this powder we
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have: θ0 = 0.435, l = −0.228, and δ = 1.68. Therefore, powder H, for which r << 1 and  k C 1, must possess
weak stability with respect to high-frequency oscillations.

Account for the inertia of the chemical-reaction zone, primarily in the solid phase, needed at high
frequencies ω can change this situation toward the extension of the region of stable combustion for exother-
mal reactions of pyrolysis. But, as is seen, for this mechanism of decomposition of the propellant account for
increasingly more rapid processes can lead to unexpected conclusions. This uncertainty is not observed when
the powder is decomposed by the mechanism of evaporation [4].

The increase in the Lewis number results in a decrease in the region of stable combustion. The influ-
ence of Le is here manifested only very slightly for |r| > 1, i.e., at low natural frequencies ω. The small
deviation of the value of Le from unity affects strongly the size of the stability region at high frequencies:
for the boundaries Γ1 — with |r| << 1 and k > 0.5, while for the boundaries Γ2 — with r << 1 and k > 3.
Moreover, the parameter a varies within the limits [0.2, 0.8], whereas the parameter δ varies within [0.25,
2.5].

When σΩ << 1, which is fulfilled at relatively low natural frequencies of the combined system solid
propellant–gas phase, we have expansions with an accuracy to O(σ2Ω2):

(z4a−z4 − z3a−z3) (z1az1Le − z2az2Le) � − aLe−1 − σΩ 


1
a

 + aLe−1 + aLe Le 

1 + 

1
a








 ,

(a−z4 − a−z3) (az1Le − az2Le) C 

1 − 

1
a




 (aLe − 1) − 2 Le σΩ 


aLe − 

1
a




 ln 

1
a

 ,

(z4a−z4 − z3a−z3) (az2Le − az1Le) C 
aLe − 1

a
 + σΩ Le 


(aLe − 1) 


1 + 

1
a




 − 

2
a

 ln 
1
a




 ,

(a−z4 − a−z3) (z2az1Le − z1az2Le) C 
1
a

 − 1 − σΩ 


(aLe + 1) 

1 − 

1
a




 − 

2
a

 Le ln 
1
a




 ,

z∆az2Le (a−z4 − a−z3) C 1 − 
1
a

 + 2σΩ 

1 − 

1
a

 − 
Le
a

 ln 
1
a




 ,

z∆ (z3 − z4) 


k

δaLe − z1



 � 

k

δaLe − 1 + σΩ 

2 (Le + 1) 



k

δaLe − 1


 − 1



 .

Using the above formulas and performing simple but unwieldy calculations, we can obtain the equa-
tion for the boundary Γ2 in the form

r = 
(k − 1)2

k + 1
 

1 + σ 

k
k + 1

 (F1 − F2) + O (σ2ω2)


 ,

F1 = 
k + 1

k − 1
 a1−Le 



1

k − 1
 f1 + 1 − aLe−1



 − g 

k − 3

(k − 1)2 ,

F2 = 
2k

k − 1
 a1−Le 




1 − aLe−1 + 

1
2δ

 
k + 1
k − 1

 f2



 ,

g = δ (1 − a) ,   f1 = 1 + aLe 

Le 



1
a

 − 1


 − 

2
a

 

1 + Le ln 

1
a








 ,   f2 = 

Le − 1
a

 + aLe−1 − Le .
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Whence at Le = 1 we obtain the formula from [6]

r = 
(k − 1)2

k + 1
 



1 − σ 

k

(k − 1)2 



a − 2 ln a + g 

k − 3

k + 1




 + O (σ2ω2)




 .

For the boundary Γ1 a similar formula looks much simpler:

k = − σδ (1 − a) 
(r − 1) (2r − 1)

2r2  + O (σ2ω2) ,   r < 0 .

For r which are small in absolute value, the above approximate formulas become unacceptable for
determination of the boundary of combustion stability. Some interest in the negative values of r has appeared
in connection with [15], in which it is suggested that r < 0 is possible for propellants decomposed by the
evaporation mechanism. As far as k < 0 is concerned, daily experience suggests that such values of this pa-
rameter r are impossible. But, on the other hand, the question arises "why, stable combustion is possible, isn’t
it?" There can be two answers: either our practice is still limited for observing the processes of combustion
with k < 0 or the combustion model considered in this work can give nonphysical regions of stable combus-
tion.

4. Nonstationary Rate of Combustion at Variable Pressure. Acoustic Admittance. The charac-
teristic of unstable combustion of primary practical importance is the decomposition rate b of the propellant.
All the remaining quantities, i.e., the temperature, the concentration of the reagent, the acoustic admittance,
etc. can be expressed in terms of b. Amplification of acoustic oscillations in the combustion chambers of
propellant rocket engines leads to an undesirable effect, i.e., acoustic instability. The modulus of the ratio
between the amplitudes of the sound wave reflected from the combustion surface of the propellant to the
sound wave incident on it is determined by the real part of the acoustic admittance ζ. If Re ζ < 0, then the
sound waves in the absence of mechanical dissipative processes will be amplified [10].

To simplify the calculation of the acoustic admittance, from the fifth, sixth, and seventh equations of
system (8) we find H ⁄ φ:

Ha−z2Le

φ
 = 

δaLe

k − z1δaLe 




Γ + 
kΓθb

0

∆
 + 1 − ν − 

Fz2a
−z1Le

φ
 − 

Gz1a−z2Le

φ




 . (11)

Let us now consider the hydrodynamic part of the problem. The equations of continuity (the second
and fifth ones in Eq. (1)) with the use of the equation of state of the gas after the transition to the Lagrangian
coordinate and dimensionless quantities can be written in the form

σ 
∂

∂τ
 

θ
η

 + B 
∂

∂ξ
 

θ
η

 = θb
0 

∂
∂ξ

 Wg ,   σ 
∂

∂τ
 
θb

η
 + B 

∂
∂ξ

 
θb

η
 = θb

0 
∂

∂ξ
 Wg.b , (12)

where

Wg = 
v + u

vb
0 + u0 ,   Wg.b = 

vb + u

vb
0 + u0 .

The gas velocities Wg and Wg.b must satisfy the boundary conditions
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ξ = 0 ,   Wg = 
θ
θb

0 
B

η
 ;   ξ = ξf

0 ,   Wg = Wg.b .

In the stable regime of combustion we have

Wg
0 = 

θ0

θb
0 ,   Wg.b

0  = 1 .

Solving Eqs. (12) simultaneously with the above-given boundary conditions in the linear approxima-
tion with the representations of the velocities Wg and Wg.b of the gas given below

Wg = Wg
0 + wgφ exp (Ωτ) ,   Wg.b = Wg.b

0  + wg.bφ exp (Ωτ) ,

we find the response wg.b of the gas velocity in the flame front:

wg.b = wg (ξ = ξf
0) = 

σΩ
θb

0  I1 + 
b

φ
 + 

1

θb
0φ

 ϑb (ξ = ξf
0) − 1 ,   I1 =  ∫ 

0

ξf

0

 




ϑ

φ
 − θ0



 dξ .

The basic formula for the acoustic admittance ζ is given in [8]. In the notation taken here it is as
follows:

ζ
γM

 = − wg.b + z2 


1

θb
0φ

 ϑb (ξ = ξf
0) − Γ



 ,   M = (vb

0  + u0) ⁄ c0 . (13)

In this form the formula is independent of the mechanism of decomposition of the propellant and of the
magnitude of the Le number. The distinction will manifest itself in using a particular form of the quantities
wg.b and ϑb(ξf

0).
Having evaluated the integral I1 and substituted ϑb (from Sec. 2) and wg.b into Eq. (13), we can give

the following form to the expression for ζ:

Fig. 3. Dependences of the modulus of the relative combustion rate b ⁄ φ
(curves 2, 4) and the real part of the acoustic admittance ζ (curves 1, 3)
in units of γ M as functions of the oscillation frequency ω of the pres-
sure.
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ζ
γM

 = 1 − 
b

φ
 − 

qz1

θb
0  

Ha−z2Le

φ
 − 

σΩ

θb
0  I1 − Γ ,

I1 = (a−z1Le − 1) 
q

z1
 
F

φ
 + (a−z2Le − 1) 

q

z2
 
G

φ
 + 

I2

σΩ
 + I3 ,

I2 = (∆ + l) (a−Le − 1) 

1 + σΩΓ − 

b
φ




 ,   I3 = (Γ + 1) (θ0 − l)  Le ln 

1
a

 − (∆ + l) (a−Le − 1) .

Thus, knowing b ⁄ φ, we can also find the acoustic admittance. The parameters F ⁄ φ and G ⁄ φ are ex-
plicitly expressed in terms of b ⁄ φ from the first three equations of system (8). The response modulus b ⁄ φ of
the decomposition rate of the propellant can be calculated analytically or numerically by solution of Eqs. (8).
The calculation results are given in Fig. 3. The dimensionless numerical parameters are equal to σ = 10−2, l
= −0.1, r = 0.1, ν = 0.8, µ = 0.2, and ϑ 0 = 0.4. Curves 1 and 2 are constructed for k = 1.4, while curves 3
and 4 are constructed for k = 1.3. The Lewis number for all the curves is equal to 1.5.

The amplification of acoustic oscillations occurs when the real part ζ is negative [2, 10, 11]. The
analysis of the acoustic admittance performed in the present work has shown that Re ζ < 0 if the combustion
process occurs near the stability boundary (in Fig. 3, the coefficients k and r are taken near this boundary)
and if the oscillation frequency of the pressure is close to the natural frequency of the system solid propel-
lant–gas phase. The closer the oscillation frequency to the boundary, the larger Re ζ in absolute value. This
conclusion, drawn from the previous works on nonstationary combustion in which the relaxation time of the
gas phase was disregarded, also remains valid for the more extended model considered in the present work.
Therefore, the above-stated results of the influence of physical parameters on the size of the region of stable
combustion can readily be extended to the problem of amplification of acoustic waves by a burning propel-
lant.

The influence of the Lewis number on both the nonstationary combustion rate and the acoustic admit-
tance is pronounced only at frequencies of the order of the reciprocal of the relaxation time in the gas phase
or higher.

The numerical solution of system (8) has been carried out using the IMSL Fortran Powerstation ap-
plication package.

NOTATION

κc, thermal diffusivity of the propellant; B, dimensionless linear combustion rate of the propellant; a,
burning out; ϑc(ξ), ϑ(ξ), and ϑb(ξ), spatial components of the disturbance of the dimensionless temperature
in the propellant, in the heating zone, and the flame zone, respectively; y(ξ), spatial component of the distur-
bance of the concentration Y; s and b, disturbance amplitudes of the position of the flame front and the com-
bustion rate, respectively; ρc and ρ, densities of the propellant and the gas; λc and λ, coefficients of thermal
conductivity of the propellant and the gas, respectively; cc, heat capacity of the propellant; cp, heat capacity
of the gas at constant pressure; Y, mass concentration of the combustible component; v and vb, velocities of
the gas; γ, adiabatic exponent; m1 and m2, mass rates of combustion in the solid and gas phases; M, Mach
number; c0, velocity of sound. Subscripts: g, gas; c, condensed; s, surface; f, flame; p, pressure; b, burning.
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